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Sharp interface limits of phase-field models

K. R. Elder,1,* Martin Grant,2 Nikolas Provatas,2,3 and J. M. Kosterlitz4
1Department of Physics, Oakland University, Rochester, Michigan 48309-4487

2Physics Department, Rutherford Building, 3600 rue University, McGill University, Montre´al, Québec, Canada H3A 2T8
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The use of continuum phase-field models to describe the motion of well-defined interfaces is discussed for
a class of phenomena that includes order–disorder transitions, spinodal decomposition and Ostwald ripening,
dendritic growth, and the solidification of eutectic alloys. The projection operator method is used to extract the
‘‘sharp-interface limit’’ from phase-field models which have interfaces that are diffuse on a length scalej. In
particular, phase-field equations are mapped onto sharp-interface equations in the limitsjk!1 and jv/D
!1, wherek andv are, respectively, the interface curvature and velocity andD is the diffusion constant in the
bulk. The calculations provide one general set of sharp-interface equations that incorporate the Gibbs–
Thomson condition, the Allen–Cahn equation, and the Kardar–Parisi–Zhang equation.
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I. INTRODUCTION

Many inhomogeneous systems involve domains of w
defined phases separated by thin interfaces. These inc
nonequilibrium systems undergoing phase separation
spinodal decomposition or by nucleation and growth@1#, or
where solidification occurs by dendritic growth@2#, or by the
growth of eutectic crystals@3#. The phenomenological de
scription of these phenomena involves the motion of w
defined sharp interfaces. The origin of such description
often transparent, being obtained by symmetry argume
and common sense. Nevertheless the properties of sh
interface models can be quite subtle as is the case for
dritic growth.

Unfortunately sharp-interface models are difficult
simulate since this usually involves solving a diffusion equ
tion subject to moving boundary conditions at the interfac
A more convenient approach is to simulate models wh
describe the bulk phases as well as the interface struc
While these models are wasteful in terms of simulating b
regions@4#, no explicit boundary tracking is needed. This
the key element to a popular method for studying syste
out of equilibrium, called ‘‘phase-field’’ modeling. In such a
approach one or more continuous fields which are functi
of spacerW and timet are introduced to describe the phas
present. Typically these fields vary slowly in bulk regio
and rapidly on length scales of the order of the correlat
length,j, near interfaces. The free energy functionalF de-
termines the phase behavior and, with the equations of
tion, gives a complete description. In other contexts, such
critical dynamics@1,5#, the fields are the order paramete
distinguishing the phases. In a binary alloy, for example,
local concentration or sublattice concentration can be
scribed by such fields. The ideas involved in this appro
have a long history, going back to van der Waals@6#. Within
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the materials community, the use of continuum field mod
is associated particularly with the work of Cahn and collab
rators@7,8#.

Phase-field models provide a description at length sc
greater than some microscopic scale of the order of a lat
spacing, but are not necessarily appropriate for a partic
system. These models apply to a large number of mic
scopic systems only whenj is much larger than any particu
lar microscopic length, such as the lattice spacing, involv
in the surface structure. Interpreted in the sense of descri
the universal features of many microscopic models,j is a
mesoscopic length representative of the microscopic st
ture. In a similar manner, sharp-interface models apply t
large number of continuum field models of pattern formati
or phase separation in the limit that the length scales defi
by the patterns are much larger thanj. An important differ-
ence exists, however, in the construction of the two
proaches. Standard sharp-interface models are constru
from phenomenological descriptions of interfaces, wh
phase-field models can be constructed to obey explicitly
fundamental principles of statistical mechanics. In princip
a phase-field model will describe a system in thermal a
mechanical equilibrium with its environment and its evol
tion from some nonequilibrium state towards its ultima
equilibrium state and must contain a sharp- or thin-interfa
description as a particular limit.

While continuum phase-field models provide a fundam
tal approach which is clear and workable, it is important
establish the connection between this description and
sharp-interface description. The main difficulty which aris
is how to take account of the finite thicknessj of the diffuse
interface of the continuum model. There has been a g
deal of discussion in the literature on how this process is
be undertaken. Some workers have extracted the inter
equations by taking the limit where the interface width of t
phase field model goes to zero@9# for the Stefan problem of
a pure material. This approach is not very useful since
interface width is always finite. More recently these calcu
tions have been extended for special choices of the free
©2001 The American Physical Society04-1
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ELDER, GRANT, PROVATAS, AND KOSTERLITZ PHYSICAL REVIEW E64 021604
ergy functionalF to include an interface of nonzero widt
@10,11#.

The purpose of this paper is to provide a clear and
tailed derivation of the sharp interface equations. The
proach follows the projection operator method of Kawas
and Ohta@12#, is generally applicable, and eliminates t
counterintuitive necessity of limiting the derivation of th
sharp interface limit to some artificial form of the free ener
functionalF @10#. This general calculation provides one s
of equations that relate the parameters of the phase-
equations to those of the sharp interface equations fo
broad class of phenomena including order–disorder tra
tions, dendritic growth, phase separation in binary allo
eutectic growth, and surface roughening. In particular, th
modynamic consistency is automatic in the present appro
for nonzero interface widths. This is in contrast to the u
physical approach of taking the limit of a zero interfa
width, which requires fine tuning of the free energy to obta
a thermodynamically consistent theory.

The structure of the paper is as follows. In Sec. II a g
eral discussion of out of equilibrium interface phenome
from both the phase-field and from the sharp-interface
proach is given. The advantages of the former from a sta
tical mechanics viewpoint are also pointed out. This conta
three subsections: Sec. II A in which systems with a nonc
served field only are described, Sec. II B where the inclus
of a conserved field representing temperature or chem
concentration is discussed, and Sec. II C in which the f
energy or appropriate thermodynamic potential and dyna
cal equations for a eutectic system with both conserved
nonconserved fields are introduced. Possible equilibr
phase diagrams are also discussed. Next, in Sec. III, sh
interface equations are obtained by projecting the dynam
of the conserved and nonconserved fields onto the inter
by a projection operator method@12#. This rather technica
derivation involves an ‘‘inner’’ expansion near the interfa
in Sec. III A in terms of curvilinear coordinates and a
‘‘outer’’ expansion far from the interface, Sec. III B. In Se
III C the inner and outer solutions are matched in a reg
where both are valid. An ambiguity in the definition of th
interface position is exploited by defining this position as
Gibbs surface which eliminates the ambiguity. This is a so
ability condition. In Sec. IV expressions are given for qua
tities such as the capillary length,d0, the surface tensions,
and the kinetic undercooling coefficientb which are param-
eters of the sharp-interface equations in terms of the
energy functionalF. It is also shown thatb.0 for noncon-
served model A dynamics,b,0 for conserved model B dy
namics, and is of either sign for the physically important ca
of model C dynamics@5#. In Sec. V, the dynamics of fluc
tuations about almost planar interfaces is discussed in te
of the sharp-interface equations of Sec. III in three cases~i!
In Sec. V A, the noiseless Kardar–Parisi–Zhang equatio
derived for a nonconserved field.~ii ! In Sec. V B the disper-
sion relationv(k) is derived for spinodal decomposition i
pure conserved model B dynamics and the crossover f
v}2k3 at smallk to v}2k2 at largek. The influence of the
kinetic undercooling coefficientb,0 is also discussed.~iii !
Then, in Sec. V C, the physically important case of coup
02160
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conserved and nonconserved fields describing the invasio
a supersaturated liquid phase by a stable phase is discu
Also, the widely used phenomenological model of solidific
tion is discussed as a special case of the more general m
considered here and several results which were previo
derived numerically are rederived analytically. A brief sum
mary of the paper is in Sec. VI. Several technical details
the sometimes rather tedious mathematical formalism are
egated to the Appendixes.

II. DESCRIBING INTERFACE PHENOMENA USING
PHASE-FIELD MODELS

A. Nonconserved field

To see the relationship between the two approaches,
useful to construct the simplest equilibrium and nonequil
rium descriptions of surfaces by both methods. The m
ideas developed below appear in the more general case
cussed in the following sections. These ideas are prese
the work by Allen and Cahn@8# on the motion of antiphase
boundaries in the kinetics of an order–disorder transition i
binary alloy. This work recovers the sharp-interface desc
tion from the phase-field model in the appropriate limit a
predicts an experimentally testable consequence of a finitj.

First, consider a surface in equilibrium. The reason w
droplets are spheres and interfaces are locally flat is
these shapes minimize surface area. The excess free e
of a surface is proportional to its areaA

DF5sA, ~1!

where the proportionality constants is the surface tension
This simple common sense approach is the essence o
sharp-interface model.

Contrast this with the phase-field approach. The free
ergy functionalF(c) for the scalar order parameterc(rW) has
the following familiar form, consistent with reflection sym
metry F(c)5F(2c)

F$c%5E drW@ 1
2 Kc~¹W c!21 f ~c!#, ~2!

whereKc.0 so that the square gradient interaction gives
free energy cost for inhomogeneities and the local bulk f
energy has a double well form satisfyingf (c)5 f (2c). An
example is thec4 form

f 52
a

2
c21

b

4
c4, ~3!

wherea}(To2T).0 with To the mean field critical tem-
perature andb.0 is a constant.

The motivation for employing such free energy functio
als is as follows. First, the free energy functional is co
structed of local or bulk terms,f (c), which interact through
the gradient term. SecondF must be an analytic function
sinceF@c(rW)# is the free energy of a particular configuratio
of c(rW) which has spatial variations on scales larger th
some microscopic cutoff length which is of the order of
4-2
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SHARP INTERFACE LIMITS OF PHASE-FIELD MODELS PHYSICAL REVIEW E64 021604
interparticle separation or a lattice spacinga0 . F describes a
mesoscopic system and should not be confu
with the true thermodynamic free energy,F
[2kBT ln (c exp(2F@c#/kBT), where kB is Boltzmann’s
constant, which is nonanalytic at a phase transition@13#. The
square gradient term is the simplest way for the model to
well defined on small length scales. Higher-order gradi
terms, such asK4(¹2c)2 could, in principle, describe corre
lations on still smaller scales, such as the internal structur
the interface. This is analogous to what is described by
Percus–Yevick or hypernetted-chain theories of dense fl
@14#. In the absence of any specific experimental motivati
however, terms proportional toK4 may be ignored. From the
point of view of identifying and studying a well-defined m
croscopic model, the square gradient free energy provid
complete description. Alternatively, the square gradi
theory describes a large class of microscopic models
vided we consider mesoscopic scalesj(K)/ao@1.

It is particularly convenient that the microscopic phas
field description is so ‘‘close’’ to mean field theory. In th
approximation,f is simply the bulk free energy density. I
practice, the form of the free energy functionalF can be
constructed straightforwardly with reference to the ph
diagram of interest. While one can also construct mic
scopic lattice gas models of phenomena such as phase
ration and dendritic solidification@15#, using similar argu-
ments of universality and simplicity, such models do n
have this convenient feature.

If fluctuations are small, the equilibrium behavior of th
model is determined by the mean field approximation

dF
dc

52Kc¹2c1
] f

]c
50. ~4!

The homogeneous bulk solutions, valid well belowTc , are
given by] f /]ceq50 and are equal to

c56ceq56Aa/b ~5!

for the bulk free energy given in Eq.~3!. Fluctuations around
the bulk solutions satisfy

^@c~rW !2ceq#@c~0!2ceq#&;e2r /j ~6!

for r @j, where j5AKc/2a and ^•••& represents an en
semble average.

Now consider a system with a flat interface located ay

50 whenc(rW) depends only ony and the interface profile
c in(y) is the solution of

2Kc

]2c in

]y2
1

] f

]c in
50 ~7!

with c in(6`)56ceq . Solving by quadratures gives

1

2
KcS ]c in

]y D 2

5 f ~c in! ~8!
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from which Eq.~1! follows immediately. In contrast to the
sharp-interface approach, this yields an explicit form for t
surface tension

sc5KcE dyS ]c in

]y D 2

. ~9!

For the particular form ofF(c) of Eqs.~2! and~3!, one finds

c in~y!5ceq tanhS y

2j D ~10!

and

sc5
2Kcceq

2

3j
. ~11!

The contrast between the sharp-interface model and
phase-field model is revealing. Both give the same mac
scopic description but the phase field approach gives a c
plete description which is accurate at large length scales
interpolates down to the smallest length scales without
stroying any important physics@13#.

Now consider a sharp interface that is in local but n
global equilibrium due to a gentle curvature. For simplic
consider phenomena where the order parameter is not
served, such as occurs when a binary alloy undergoes
order–disorder transition andc is the sublattice concentra
tion. The interface moves to locally reduce the surface a
and surface free energy with an interface velocityv. Expand-
ing v in a Taylor series in powers ofk gives

v52nk ~12!

to lowest order in the curvature. This is the sharp-interfa
theory for the motion of anti-phase boundaries. Note th
sincen is the only coefficient which enters the theory a
has dimensions of a diffusion constant, any time-depend
lengthR(t) must satisfy

R~ t !5~nt !n ~13!

by dimensional analysis, where the growth exponent

n51/2. ~14!

Such an approach was first done by Lifshitz@16# and by
Turnbull @17#. The sharp-interface treatment alone cann
predict the value ofn. An additional argument, which turn
out to be incorrect for the motion of antiphase boundari
was used to predictn}scGc , whereGc is a mobility.

A first principles approach to this phenomenon is due
Allen and Cahn@8#. Neglecting noise, the equation of motio
for the nonconserved sublattice concentration is@1,5,8#

]c

]t
52Gc

dF
dc

52GcF2Kc¹2c1
] f

]cG . ~15!
4-3
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ELDER, GRANT, PROVATAS, AND KOSTERLITZ PHYSICAL REVIEW E64 021604
Allen and Cahn denoted the position of the antiphase bou
ary by a curved, time-dependent interfaceu(rW,t)50. They
then looked for solutions of the formc(rW,t)5c in@u(rW,t)#.
This gives

]c

]t
52v

]c in

]u
52GcF2Kc

]2c in

]u2
2Kck

]c in

]u
1

] f

]cG ,

~16!

wherek52¹W •n̂ with n̂5¹W u/u¹W uu the unit vector normal to
the interface andu(rW,t) a coordinate in the directionn̂.
Eliminating ] f /]c in using Eq.~7! gives Eq.~12! where, in
contrast to the sharp interface theory, one obtains an exp
expression for the transport coefficient,

n5KcGc . ~17!

Results in the presence of stochastic noise have been
tained by many authors, particularly Bausch, Domb, Jans
and Zia@18# and by Kawasaki and Ohta@12#.

Although both approaches correctly find that the norm
velocity is proportional to the curvature, the Allen–Cahn
sult for n @8# is noteworthy. The earlier theory, which argue
n}scGc implies a strong dependence of the velocityv on
interfacial thickness sinces}1/j, from Eq.~11!. In contrast,
Allen and Cahn predict thatn is independent of interfacia
thickness. This was clearly demonstrated in an experim
by Pindaket al. @19# where they studied orientational pa
terns in freely suspended dipolar smectic C liquid crys
films. Since their smectic C films have a permanent elec
dipole moment of magnitudeP, the director anglef can be
oriented with an electric field of magnitudeE. The free en-
ergy is

F5E drW@ 1
2 K~¹f!22EP cosf#, ~18!

so the width of the interface,

j}1/AE ~19!

can be varied easily. The experiments directly verify that
size of a domain of stable orientation grows asR(t)
5(nt)1/2, wheren is independent of interface width in ac
cord with the prediction of Allen and Cahn@8#. In addition,
the experiments show that the sharp-interface result,v}k, is
independent of interface width providedj/R!1.

It is straightforward to include an external fieldc coupling
linearly to c. ThenF→F1Fext with

Fext52E drWcc ~20!

and one of the phases becomes metastable depending o
sign of c, so that the interface translates even if it is fl
Hence

v5v0~c!2nk ~21!
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with v0(c)}c. This allows one to simulate Kolmogorov
Avrami-Johnson-Mehl growth of droplets@20# and, in the
presence of noise, Kardar-Parisi-Zhang dynamic roughen
@21#.

B. Including a conserved field

Other processes can be simulated when one of the ph
is metastable and the growth of the stable from the me
stable phase is controlled by a conservation law. This
scribes solidification of a metastable supercooled liq
phase and the growth of the stable solid is limited by
diffusion of latent heat from the surface of the moving so
front. The external fieldc is then proportional to the laten
heat. In the sharp-interface formulation,c obeys a diffusion
equation in the bulk phases

]c

]t
5Dc¹

2c, ~22!

whereDc is a diffusion constant.
The steady state velocityv of the interface is given by

integrating Eq.~22! across the interface to obtain

v}n̂•~Dc
1¹W cu12Dc

2¹W cu2!, ~23!

where the superscripts6 refer to the values of the norma
gradient ofc on either side of the interface. The condition
local equilibrium at the interface is

dc}k, ~24!

which is a Gibbs-Thompson condition relating the local e
cess concentrationdc to the curvature. This says that exce
external driving force is balanced by the curvaturek. In re-
gimes of high undercooling, this is sometimes supplemen
by an additive term proportional tov, describing kinetic un-
dercooling.

To study this by a phase-field approach, letc be a con-
tinuous function of space and time which is conserved:

]c~rW,t !

]t
5Gc¹

2
dF
dc

, ~25!

whereGc is the mobility of the fieldc. For the model to be
well defined, a self-energy forc or a positive additive con-
tribution to F of the form

Fc}E drW@ 1
2 c2# ~26!

must be included. Within a mean field approximation, th
gives a homogeneous equilibrium solutionc}c. Note that
the interface invades the metastable phase because ofFext
but it must also satisfy the conservation ofc as defined by
Eqs. ~25! and ~26!. This implies that the interface deform
into a parabolic shape, dumping excessc to the sides while
propagating forward at a constant velocity. The parabo
shape has a constant growth velocity in the forward dir
tion, satisfying the fact that the system is driven with a co
4-4
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SHARP INTERFACE LIMITS OF PHASE-FIELD MODELS PHYSICAL REVIEW E64 021604
stant thermodynamic force, while lateral growth has a vel
ity ;t21/2, thereby satisfying the conserved diffusio
equation forc.

It turns out that, although this is the right approach,
implementation needs some fine tuning. First, when con
ering dendritic growth, the theory of microscopic solvabili
@22# has shown that dendrites require an anisotropic sur
tension to be well defined. Hence one must letK

→K(¹W c/u¹cu) in some convenient prescribed way. Next,
a very useful paper, Kobayashi@23# has noted that, to kee
the equilibrium solutionsceq from shifting appreciably when
c is applied,Fext of Eq. ~20! should be modified to

Fext52E drWcC~c!, ~27!

whereC(c) is an odd function ofc satisfying

]C/]ceq50. ~28!

For example, if ceq561, one can choose]C/]c5(1
2c2)2. Other forms are possible. Finally, one can choose
make thec field phase separate by replacing the self-ene
term in the free energy of Eq.~26! with a double well form,
analogous to Eq.~3!. This permits the study of eutectic crys
tallization @3#.

C. The free energy functional

Consider two fields, a nonconserved phase fieldc and a
conserved fieldc. The phase field distinguishes between,
example, liquid and solid phases and thec field can be taken
as a concentration. The free energy functional describing
system can be written as

F$c,c%5E drWF1

2
Kcu¹W cu21

1

2
Kcu¹W cu21 f ~c,c!G ,

~29!

where f (c,c) is the local bulk free energy density and th
gradient terms account for interfaces and inhomogeneitie
discussed above. The dynamics of these fields are desc
by the equations of motion for the nonconservedc, Eq. ~15!,
and the conserved concentrationc,

]c

]t
5Gc¹

2
dF
dc

5Gc¹
2F2Kc¹

2c1
] f

]cG , ~30!

wheredF$c,c%/dc5m is a chemical potential andGc is a
mobility. The usual additive noise terms, related to the tra
port coefficientsGc,c by fluctuation-dissipation relation
@1,5#, have been neglected for simplicity. In mean fie
theory, the equilibrium states of the system with an interfa
normal toŷ are defined by

Kc

]2c

]y2
5

] f

]c
~31!

and
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Kc

]2c

]y2
5

] f

]c
2meq , ~32!

wheremeq is the chemical potential of the uniform equilib
rium states. Integrating Eq.~32! over c gives the Maxwell’s
equal area construction rule,*c1

c2dc(] f /]c2meq)50, where

c1 andc2 are defined by] f /]cuc1 ,c2
5meq .

For a genericf (c,c) there may be many possible equilib
rium and metastable states contained in this free energy.
illustration, consider the following bulk free energy

f ~c,c!5u
T

TM
@c ln c1~12c!ln~12c!#

1FaDT2bS c2
1

2D 2GC~c!2
1

2
c21

1

4
c4.

~33!

where C(c)[2c24c3/312c5/5 and DT[(T2TM)/TM
with TM the melting temperature and the other phenome
logical parameters are determined by matching to exp
mental phase diagrams. If these parameters are chosena
5b51.0 andu50.6, the mean field phase diagram shown
Fig. 1 emerges. As can be seen, this phase diagram con
liquid/solid and solid/solid coexistence regimes. For th
symmetric free energy the melting temperature atc51/2 is
denotedTM and the critical point of the solid/solid coexis
ence regime is at (c,T)5(1/2,Tc) with Tc,TM . As the pa-
rameteru is decreased,Tc increases until the solid/solid co
existence region collides with the liquid/solid coexisten
regime whenTc.TM and a eutectic point is formed a
(c,T)5(1/2,TE) as shown in Fig. 2.

FIG. 1. Mean field phase diagram obtained from the bulk f
energy of Eq.~33! for the parametersa5b51.0 andu50.6. In this
figure the regions containing vertical and horizontal lines are liqu
solid and solid/solid coexistence regions, respectively.
4-5
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ELDER, GRANT, PROVATAS, AND KOSTERLITZ PHYSICAL REVIEW E64 021604
As can be seen from the phase diagrams of Figs. 1 an
this simple free energy contains many phases and, in c
junction with appropriate equations of motion, can be use
study a wide variety of phenomena. A number
‘‘quenches’’ have been highlighted on these diagrams to
lustrate several different kinetic processes that may aris
quench is defined as a rapid change in temperature w
takes a system from one region of the phase diagram to
other and is often considered instantaneous in theore
modeling. In the next section the dynamics of an interfa
separating a stable and a metastable phase is considered
calculations are done in a general manner to include all
possible quenches shown in Figs. 1 and 2. To construct
relevant sharp-interface equations no reference will be m
to the explicit form of the bulk free energy termf. It is
assumed thatf has been chosen merely so that all the pha
of interest are well defined. In the remainder of this pape
detailed implementation of these ideas is presented, ma
connections to the sharp- or thin-interface limit.

III. DERIVATION OF INTERFACE EQUATIONS
OF MOTION

The goal of this section is to derive the sharp int
face equations for systems described by a free ene
functional F @such as is given by Eqs.~29! and ~33!# and
the Langevin equations given in Eqs.~15! and ~30!. These
latter equations should be supplemented by addi
stochastic noises,hc(rW,t) and hc(rW,t) of zero mean and
correlations ^hc(rW,t)hc(rW8,t8)&52GcTd(rW2rW8)d(t2t8)
and ^hc(rW,t)hc(rW8,t8)&52GcT¹2d(rW2rW8)d(t2t8) with
^hchc&50 as required by the fluctuation dissipation the
rem. With these stochastic noises, the dynamical equati
Eqs.~15! and ~30!, are the simplest equations which respe
the macroscopic conservation laws and also ensure tha

FIG. 2. Mean field phase diagram obtained from bulk free
ergy given in Eq.~33! for the parametersa5b51.0 andu50.45.
In this figure the regions containing vertical and horizontal lines
liquid/solid and solid/solid coexistence regions, respectively.
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system evolves towards its ultimate state of thermal and
chanical equilibrium with its external environment.

The asymptotic analysis proceeds by expanding aroun
planar equilibrium interface described by Eqs.~31! and~32!.
The interface can be taken out of equilibrium by either ge
tly curving it or by making one of the two bulk phases me
stable. In the former case, a gentle curvature is one in wh
the radius of curvature 1/k is large compared to the interfac
width or correlation length. Thus one small dimensionle
expansion parameter iskj. In the latter case, the differenc
between the free energy of the stable and metastable ph
causes the interface to propagate into the metastable pha
the free energy difference is small the propagation velocitv
is small. In this context, a small velocity means that t
interface moves so slowly that a steady state diffusion fiel
allowed to form in front of the interface. In other words, th
time for the diffusion field to relax when the interface mov
a distancej should be much smaller than the timej/v taken
for the interface to move that distance. Since the diffus
time t5j2/D, this leads to another small dimensionless p
rameterjv/D which is known as the interface Pe´clet num-
ber. In the following analysis the interface equations will
obtained to lowest order in both small parameters. Tech
cally the expansion to lowest order in both small parame
can be achieved if they are regarded as the same order i
expansion. In the calculations to follow both parameters w
be taken to beO(e) with e!1.

The calculations make use of the fact that the fields
have qualitatively differently close to and far from the inte
face. In the region close to the interface, the fields vary r
idly over distancesO(j) while, far from the interface, they
vary over distancesO(j/e). If there exists a length scalez
such that 1!z/j!1/e, then distinct ‘‘inner’’ and ‘‘outer’’
regions can be defined, as shown in Fig. 3, and it is app
priate to solve in both inner and outer regions and match
solutions at the length scalez. Formally, the technique re

-

e

FIG. 3. Illustration of inner and outer regions used in compu
tions.
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SHARP INTERFACE LIMITS OF PHASE-FIELD MODELS PHYSICAL REVIEW E64 021604
quires an inner expansion near the interface and an o
expansion far from the interface.

A. Inner expansion

Consider an inner region defined by2z,u,z, whereu
is a coordinate normal to the interface and 1!z/j!1/e. The
aim is to obtain asymptotic expansions for the solutions
the evolution equations~15! and ~30! valid in this inner re-
gion. The latter can be written in a compact form as

1

Gc

]c

]t
5¹2dm, ~34!

where

dm5m~rW !2meq52Kc¹
2c1

] f

]c
2meq . ~35!

The first step is to partition the system into two regionsV1

andV2 bounded by surfacesS1 andS2 , respectively. The
regionV1 is defined by 0,u,z and similarly forV2 . The
position of the interface between two bulk regions is defin
asu(rW,t)50. These definitions are purely formal, but to fi
ideas, the surfaceu(rW,t)50 may be regarded as the surfa
near which the fieldsc,c vary rapidly over distancesO(j).
It is then useful to define Green’s functionsG6(rW,rW8) in the
regions2z,u,0 (G2) and in 0,u,z (G1) obeying

¹82G6~rW,rW8!5d~rW2rW8! ~36!

and satisfying the boundary conditions,G(rW,rW8)50 at u

50 and u850, ]G(rW,rW8)/]u50 at u5

6z, ]G(rW,rW8)/]u850 at u856z, and periodic in the
other directions. Note that bothrW and rW8 lie in the same
region,V1 or V2 .

Multiplying Eq. ~34! by G6 and integrating overrW8
PV6 gives

dm~rW !5E
V6

drW8
G6~rW,rW8!

Gc

]c8

]t

1 R
S6

dSW 8•~dm8¹W 8G62G6¹W 8dm8!, ~37!

wheredm85dm(rW8) defined as in Eq.~35!, *V1
drW8 denotes

integration overV1 defined by 0,u(rW8),z and rS1
dSW 8

denotes integration over the boundariesS1 enclosingV1 and
similarly for V2 enclosed byS2 . The interface dynamics
can now be obtained using by the projection method of K
wasaki and Ohta@12#. This is accomplished by multiplying
Eq. ~37! by ]c0

in/]u wherec0
in(u) is determined by the solu

tion of Eqs.~31! and ~32! for a planar interface in therma
equilibrium and integrating over2z,u,1z to obtain
02160
ter

o

d

-

B1S[E
2z

z

du
]c0

in

]u
dm5E

2z

z

du
]c0

in

]u S ] f

]c
2Kc¹

2c2meqD ,

~38!

whereB5B 11B 2 andS5S 11S 2 with

B 656
1

Gc
E

0

6z

du
]c0

in

]u E
V6

drW,8G6~rW,rW8!
]c8

]t
, ~39!

S 656E
0

6z

du
]c0

in

]u R
S6

dSW 8•~dm8¹W 8G62G6¹W 8dm8!.

~40!

An analogous formula forc is obtained by multiplying Eq.
~15! by ]c0

in/]u, with c0
in(u) the solution of Eqs.~31! and

~32!, and integrating over2z,u,z @12# to obtain

1

Gc
E

2z

z

du
]c0

in

]u

]c

]t
5E

2z

z

du
]c0

in

]u S Kc¹2c2
] f

]c D . ~41!

Each term in the above equations can be systematically
panded in powers ofe. In this paper, attention is restricted t
the termsO(e) as much of the relevant physics is apparen
this order. Going to higher order ine does not yield any new
physical insight but does require considerable bookkeep
skill.

To facilitate the expansion,c(rW,t), c(rW,t), and the
chemical potentialm(rW,t) are expanded in a power series
e,

c~rW,t !5c0
in@u~rW !#1edc1

in1e2dc2
in1•••,

c~rW,t !5c0
in@u~rW !#1edc1

in1e2dc2
in1•••,

m~rW,t !5m0
in@u~rW !#1edm1

in1e2dm2
in1•••, ~42!

where the superscript in refers to the inner solution. To
pand the Laplacian in powers ofe, it is useful to introduce a
curvilinear coordinate system with one coordinateu along
the local normal to the interface and (d21) coordinatessW
perpendicular tou and tangent to the interface. For simplici
a two-dimensional system is considered wheres is the scalar
arclength. Note that theO(e0) terms,c0

in andc0
in in Eq. ~42!,

are the equilibrium planar interface solutions of Eqs.~31!
and ~32!.

At this early stage of the calculations it is worth pointin
out that the exact position of the interface has not been sp
fied. The choice of the exact interface position is somew
flexible to within a distancej and there is no particular rea
son for choosing the interface position to be defined
c@u(rW,t)50#50 as is often done in the literature. Indee
this particular choice can lead to unreasonable constraint
the free energy for a mapping between the phase-field m
and the sharp-interface limit to be possible. As shown
Kawasaki and Ohta@12# for models describing one field
~e.g., model A or B in the Halperin and Hohenberg class
cation scheme@5#! it is convenient to define the interfac
4-7
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position by setting terms similar toA1 to zero. In this work
the interface will be chosen to be the Gibbs surface defi
so that the excess concentration is equal on both sides o
interface. It will be shown that this is a solvability conditio
for the matching equations, whose physical interpretatio
to ensure continuity of the chemical potential across the
terface.

The transformation from Cartesian to curvilinear coor
nates~see Appendix A! leads to the formal expansion

j2¹25L01eL11e2L21•••, ~43!

where the specific form ofLn depends on the expansion.
the inner region, derivatives of the fields with respect tou are
much larger than derivatives with respect tos which are
identically zero when the curvaturek and the Pe´clet number
vanish. This is taken into account by introducing the dime
sionless variablesū and s̄ which areO(e0) by u5jū and
s5j s̄/e. As shown in Appendix A, this scaling leads to

L05] ūū ,

L15k̄] ū ,

L25] s̄s̄2k̄2ū] ū ,

where the dimensionless curvature,k̄[jk/e, is O(e0).
Lastly, the time derivatives in Eqs.~39! and~41! must be

expanded ine. For these calculations, it is convenient
work in the frame in which the interface is stationary so th

]

]t U
rW
5

]

]tU
(u,s)

2vW •¹W , ~44!

wherevW is the interface velocity which has components n
mal and tangential to the interface. The time derivative
the right-hand side corresponds to relaxational dynamics
accounted for by motion of the interface. When this opera
acts on the fields,c andc, the tangential component and tim
derivative areO(e3) and can be dropped@24#. Thus toO(e),
]/]turW becomes

]

]t U
rW
52e

v1

t

]

]ū
1O~e2!1•••, ~45!

where the normal velocity has been expanded in a po
series ine,

vnormal[2
]u

]t
[

j

t (
m51

`

emvm . ~46!

Using these expansions and expandingf aroundc0
in and c0

in

the right-hand sides of Eqs.~38! and ~41! become
02160
d
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-
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E
2z

z

du
]c0

in

]u Fm01K̄cj
2¹2c2

] f

]cG
5E

2 z̄

z̄
dū

]c0
in

]ū
@~m01K̄cL 0c0

in2 f i
(1,0)!

1e~K̄c~L 1c0
in1L 0dc1

in!2dc1
inf i

(2,0)2dc1
inf i

(1,1)!

1O~e2!# ~47!

and

E
2z

z

du
]c0

in

]u F K̄cj2¹2c2
] f

]cG
5E

2 z̄

z̄
dū

]c0
in

]ū
@~K̄cL 0c0

in2 f i
(0,1)!

1e~K̄c~L 1c0
in1L 0dc1

in!

2dc1
inf i

(0,2)2dc1
inf i

(1,1)!1O~e2!#, ~48!

where f i
(n,m)[]n1mf /]cn]cmuc

0
in ,c

0
in, K̄c[Kc /j2, K̄c

[Kc /j2, and z̄5z/j. Terms ofO(e0) vanish by construc-
tion. For later use, it is convenient to perform partial integ
tions on combinations of terms@25#

E
2 z̄

z̄
dū

]c0
in

]ū
S K̄c

]2

]ū2
2 f i

(2,0)D dc1
in

5E
2 z̄

z̄
dūdc1

inS K̄c

]2

]ū2
2 f i

(2,0)D ]c0
in

]ū

5E
2 z̄

z̄
dūdc1

inf i
(1,1)

]c0
in

]ū
~49!

and

E
2 z̄

z̄
dū

]c0
in

]ū
S K̄c

]2

]ū2
2 f i

(0,2)D dc1
in

5E
2 z̄

z̄
dūdc1

inS K̄c

]2

]ū2
2 f i

(0,2)D ]c0
in

]ū

5E
2 z̄

z̄
dūdc1

inf i
(1,1)

]c0
in

]ū
~50!

since derivatives ofc0
in andc0

in vanish atū56 z̄ in the limit

z̄5z/j@1.
To complete the calculation, the left-hand sides of E

~38! and~41! are expanded to lowest order ine. The expan-
sion for c in Eq. ~41! is straightforward
4-8
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1

Gc
E

2z

z

du
]c0

in

]u

]c

]t
52

e

GctE2 z̄

z̄
dū

]c0
in

]ū
v1

]c0
in

]ū

52e
v1j

t

sc

KcGc
1O~e2!, ~51!

where

sc[KcE
2z

z

duS ]c0
in

]u D 2

. ~52!

The equivalent expansion forc is more complicated. The
algebra is given in Appendix B. Formally, the results of the
calculations can be written as

B1S5e~B1 /t1S1!1e2~B2 /t1S2!1•••, ~53!

whereBn andSn are given in Appendix B.
Putting all these results together gives the following t

equations toO(e)

v1j

t

sc

GcKc
52

k̄sc

j
2A1 ~54!

and

Dcdm1
in~0,s!

52
sck̄

j
1A12

v1~s!j2

tGc
E

2 z̄

z̄
dū@c0

out~ ū!2c0
in~ ū!#2

2
]dm1

in

]ū
U

2 z̄

E
2 z̄

0

dū@c0
out~ ū!2c0

in~ ū!#

2
]dm1

in

]ū
U

z̄

E
0

z̄
dū@c0

out~ ū!2c0
in~ ū!# ~55!

whereDc[c0
in( z̄)2c0

in(2 z̄) is the miscibility gap,

c0
out~ ū![H c0

in~2 z̄ !, ū,0

c0
in~1 z̄ !, ū.0,

~56!

sc[KcE
2z

z

duS ]c0
in

]u D 2

, ~57!

and

A15E
2 z̄

z̄
dūS dc1

in
]c0

in

]ū
2dc1

in
]c0

in

]ū
D f i

(1,1) . ~58!

Equation ~55! gives the chemical potentialm of the inner
solution at the interface~i.e., at ū50) which must be
matched to the outer solution atū56 z̄. An expression for
dm1

in(6 z̄) can be obtained by expanding Eq.~34! to O(e)
02160
e

v1

]c0
in

]ū
52

Gct

j2
L 0dm1

in . ~59!

Integrating Eq.~59! twice, first fromū to z̄ and then from 0
to z̄ yields

dm1
in~ z̄,s!5dm1

in~0,s!1 z̄
]dm1

in

]ū
U

z̄

1
v1j2

tGc

3E
0

z̄
dū@c0

out~ ū!2c0
in~ ū!# ~60!

and similarly for dm1
in(2 z̄). From Eqs.~55! and ~60! we

obtain

Dcdm1
in~6 z̄,s!52

sck̄

j
1A16Dcz̄

]dm1
in

]ū
U

6 z̄

2
v1j2

tGc
E

2 z̄

z̄
dū@c0

out~ ū!2c0
in~ ū!#2

2
]dm1

in

]ū
U

2 z̄

E
2 z̄

0

dū@c0
out~ ū!2c0

in~ ū!#

2
]dm1

in

]ū U
z̄

E
0

z̄
dū@c0

out~ ū!2c0
in~ ū!#

1Dc
v1j2

tGc
E

0

6 z̄
dū@c0

out~ ū!2c0
in~ ū!#.

~61!

The integrals in Eq.~61! can be written in a more usefu
form by noting thatz̄@1 in the inner region so thatc0

in

(6ū)5c0
in(6`) for uūu>z̄. Equation~61! becomes

Dcdm1
in~6 z̄,s̄!52

sck̄

j
1A16Dcz̄

]dm1
in

]ū
U

6 z̄

2
v1~ s̄!j2

tGc
E

2`

1`

dū@c0
in~ ū!2c0

out~ ū!#2

2
]dm1

in

]ū
U

2 z̄

E
2`

0

dū@c0
out~ ū!2c0

in~ ū!#

2
]dm1

in

]ū
U

z̄

E
0

1`

dū@c0
out~ ū!2c0

in~ ū!#

1Dc
v1~ s̄!j2

tGc
E

0

6`

dū@c0
out~ ū!2c0

in~ ū!#.

~62!
4-9
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One last result will be needed and is obtained by integra
Eq. ~59! over 2 z̄,ū, z̄,

v152
tGc

Dcj2 S ]dm1
in

]ū
U

z̄

2
]dm1

in

]ū
U

2 z̄

D . ~63!

The solution fordm1
in(6 z̄) must be matched to the solutio

in the outer region.

B. Outer expansion

Far from the interface, the fieldsc andc vary slowly in
space and are close to the bulk equilibrium valuesceq and
ceq . Variations of the fields in the bulk regions far from th
interface take place on length scalesO(j/e) in all directions
which implies that suitable dimensionless space and t
coordinates are (ũ,s̃, t̃ )[(eu/j,es/j,e2t/t).

Expanding c(rW,t) about the bulk equilibrium solution
c(rW,t)5dcout(rW,t)1ceq , Eq. ~15! becomes

]dcout

]t
5GcS Kc¹2dcout2

] f

]c U
eq

2
]2f

]c2U
eq

dcout

2
1

2!

]3f

]c3U
eq

~dcout!22
1

3!

]4f

]c4U
eq

~dcout!32••• D .

~64!

By definition, (] f /]c)eq50 and, sincedcout(rW,t)50 in the
limit e→0, Eq. ~64! is linear at O(e). Furthermore,
(]2f /]c2)eq.0 so that dcout(rW,t) vanishes exponentially
with time for all wavelengths. Thusdcout(rW,t) is trivial in
the outer region and can be ignored. It is convenient to
pandcout(rW,t) andmout(rW,t) in the outer region as

cout~rW,t !5c0
out~rW !1edc1

out~rW,t !1•••,
~65!

mout~rW,t !5m0
out~rW !1edm1

out~rW,t !1•••,

wherec0
out(rW) is given by Eq.~56!. At O(e3) in dimension-

less variables, in the lab frame

]dc1
out

] t̃
5

tGc

j2
¹̃2dm1

out, ~66!

where ¹̃[(j/e)¹ is the scaled dimensionless derivati
suitable for the outer region. This simplifies to a linear d
fusion equation for the chemical potential inside the b
phases which reads, in dimensional units,

]mout

]t
5Dc¹

2mout, ~67!

where Dc[Gc(]mout/]cout)eq is a diffusion constant. The
value ofDc depends on the bulk equilibrium phase cons
ered.
02160
g

e

x-

-

C. Matching and the Gibbs surface

To solve the diffusion problem of Eq.~67!, initial values
dm1

out(ũ50,s̃) are required. These are to be obtained

matching to the inner solutiondm1
in(ū,s̄) at ū5 z̄. The

matching ofdm1
in(ū,s̄) to dm1

out(ũ,s̃) and]dm1
in(ū,s̄)/]ū to

]dm1
out/]ũ looks problematical, but it should be remember

thatm in(rW,t) andmout(rW,t) are exactly the same function ex
pressed in terms of different variables (ū,s̄) and (ũ5eū,s̃
5 s̄), respectively, reflecting the scales over whichm in and
mout vary. Both are expanded as a power series ine and the
functions and their derivatives matched where both exp
sions are valid. Both are expressed in terms of the sa
variables (ū,s̄) and matched atū5 z̄. This is spelled out in
some detail in the rest of this section.

To obtain dm1
out(ũ506,s̃) from dm1

out(ũ56 z̃,s̃)

5dm1
in(ū56 z̄,s̄) with z̃[ez̄, it is useful to Taylor expand

aboutũ5 z̃,

dm1
out~ ũ,s̃!5dm1

out~6 z̃,s̃!1~ ũ7 z̃ !
]dm1

out

]ũ
U

6 z̃

1•••.

~68!

In the outer region,z̃!1 and this expansion is valid atũ
50

dm1
out~6 z̃,s̃!5dm1

out~0,s̃!6 z̃
]dm1

out

]ũ
U

6 z̃

1•••. ~69!

Sincedm1
out(6 z̃)5dm1

in(6 z̄), we can use Eqs.~62! and~69!
to obtain

Dcdm1
out~0,s̃!

52
sck̄

j
1A12

v1~ s̃!j2

tGc
E

2`

1`

dū@c0
in~ ū!2c0

out~ ū!#2

2
]dm1

in

]ū
U

2 z̄

E
2`

0

dū@c0
out~ ū!2c0

in~ ū!#

2
]dm1

in

]ū
U

z̄

E
0

1`

dū@c0
out~ ū!2c0

in~ ū!#

1Dc
v1~ s̃!j2

tGc
E

0

6`

dū@c0
out~ ū!2c0

in~ ū!#, ~70!

which gives the appropriate boundary value ofdm1
out(0,s̃).

The inner solutiondm1
in(0) differs from the outer solution

dm1
out(0) since the matching is done atũ5 z̃ and extrapo-

lated linearly toũ50 by Eq. ~69!. The extrapolation and
matching ofdm1

in to dm1
out is illustrated pictorially in Fig. 4.

The right-hand side of Eq.~70! appears to depend o
whether the inner and outer solutions are matched atu5z or
4-10
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u52z because of the last term. This ambiguity is eliminat
by defining the interface to be a Gibbs surface atu50 de-
fined by the condition

E
2`

1`

du@c0
out~u!2c0

in~u!#50. ~71!

This can always be satisfied by choosing the position of
interface atu50 to be such that Eq.~71! is satisfied. In
essence, the interface position is determined by the cond
that the excess concentration on one side of the interfac
exactly compensated by the deficit on the other, as show
Fig. 5. This can be regarded as a solvability condition.

FIG. 4. Matching ofdm1
in(u) ~dashed line! with dm1

out(u) ~solid
line! at u56z.

FIG. 5. The Gibbs surface atu50 defined by Eq.~71! which
matches the concentration deficit on one side with the concentra
excess on the other.
02160
d

e

on
is
in

Another result that will be needed is obtained from E
~63! by matching the first derivative of the chemical pote
tial. In dimensional units, this reads

vDc52GcS ]dm in

]u U
z

2
]dm in

]u U
2z

D . ~72!

Matching derivatives of the inner and outer solutions form
and extrapolating back tou506 by Eq.~68!, gives the stan-
dard result

vDc52GcS ]mout

]u U
01

2
]mout

]u U
02

D ~73!

sincemout(u) is linear for 0,uuu<z from Eq. ~68!. Finally,
combining Eqs.~70!, ~71!, and ~73! gives the chemical po-
tential at a moving, curved interface

Dc@mout~0,s!2meq#52sck1E 2v1eA11O~e2!,
~74!

whereA1 is given by Eq.~58! and

E 2[
1

Gc
E

2`

1`

du~@c0
out~u!#22@c0

in~u!#2!. ~75!

IV. SUMMARY OF RESULTS

All the results can be combined into a single set of bou
ary layer equations that can describe many different phys
phenomena. Typically the boundary layer equations are w
ten in terms of the concentration, which, in the outer regi
is simply related to the chemical potential atO(e) by the
relationship

dm5
]m

]c U
eq

dc. ~76!

Combining this result with Eqs.~74! and ~54! gives the
Gibbs–Thomson relation in dimensional units

dc~0,s!

Dc
52dok~s!2bv, ~77!

wheredo is the capillary length given by

do5
s

~Dc!2~]m/]c!eq

, ~78!

s[sc1sc is the total surface tension given by

s5E
2`

`

duFKcS ]c0
in

]u D 2

1KcS ]c0
in

]u D 2G ~79!

andb is the coefficient of kinetic undercooling given by

b5
1

~Dc!2~]m/]c!eq
F sc

KcGc
2E 2G , ~80!on
4-11
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which is obtained by eliminatingA1 from Eq. ~74! by using
Eq. ~54!. Equation~77! provides a boundary condition at th
interface for the diffusion equation of Eq.~67! which can be
written as

]dc

]t
5Dc¹

2dc, ~81!

where

Dc[Gc

]m

]c U
eq

. ~82!

This must be solved in conjunction with Eq.~73! which may
be written,

Dc v~s!5FDc

]dc

]u G
02

2FDc

]dc

]u G
01

. ~83!

To understand the significance of each term that enters
above equations it is useful to consider some limiting cas
First consider the case in which the concentration field i
constant slightly different fromceq , the equilibrium value,
c5ceq1dc. If dm is the chemical potential difference be
tween the phases defined by the nonconserved field atu5
1` and2`, then Eq.~77! reduces to the Allen-Cahn equa
tion in a field,

v52KcGcS k1
dmDc

sc
D . ~84!

From this point of view the kinetic undercooling can b
thought of as simply the relaxation of surface tension in
nonconserved field. Thus the Gibbs-Thomson equation
equivalent to the Allen-Cahn equation in the appropri
limit.

The other simplifying case is when the nonconserved fi
is a constant as in a pure liquid or solid phase. In this ca
the sharp-interface equations remain the same except th
efficientss andb become

s5sc ~85!

and

b52~E/Dc!2/~]m/]c!eq . ~86!

For the conserved case of model B,b is always negative.
This term takes into account the lag of the concentration fi
behind a moving front. When the interface is moving, t
interfacial profile cannot instantaneously relax to the corr
equilibrium shapec0

in . For the conserved field, this corre
tion is roughly as important as dynamic relaxation in t
bulk phase, as will be seen in the next section.

V. LINEAR ANALYSIS

To illustrate the influence of the various terms that en
the sharp-interface model, it is interesting to study the
namics of fluctuations around an almost planar interface
02160
he
s.
a

a
is
e

d
e,
co-

ld

t

r
-
o

fix ideas, it is useful to consider an interface separating t
phases defined by the equationy5h(x,t) as shown in Fig. 6.
In the calculations to follow it will be assumed that¹W h(x,t)
is a small parameter. This is an additional constraint not
plicit in the sharp-interface models.

To facilitate the analysis it is worth noting that the norm
velocity and curvature can be written in terms of derivativ
of h as follows:

v52
]u

]t
5

1

g

]h

]t
~87!

and

k52
1

g3

]2h

]x2
, ~88!

whereg[A11(]h/]x)2.

A. Nonconserved dynamics

As discussed in the preceding section, the sharp-inter
equations reduce to the Allen–Cahn equation in a field w
the conserved field is a constant. When a single valued in
face as described above is considered, Eq.~84! reduces to the
Kardar–Parisi–Zhang~KPZ! equation@21# in the absence of
noise. Substituting Eqs.~87! and ~88! into Eq. ~84! and lin-
earizing inh gives

]h

]t
5n

]2h

]x2
1

l

2 S ]h

]xD 2

, ~89!

where h→h2lt, n[GcKc , and l[2n dm Dc/sc . The
additive noise termh(x,t) in the standard KPZ equation@21#
appears when stochastic noise is included in the fundame
Langevin equations.

As a specific example, consider the following free ener

FIG. 6. Interface in Cartesian coordinates.
4-12
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F5E drWS 2
a

2
c21

Kc

2
u¹W cu21

b

4
c41ddcc1

w

2
~dc!2D

~90!

wheredc[c2ceq andc is a constant. For this free energy,
planar interface is stationary whend→0. This interface is
defined by the equations:

c0
in5ceq tanhS u

2j D ,

c0
in5ceq2

d

w
c0

in ,

and

meq50, ~91!

wherej5AKc/2a andceq5Aa/b. Thus the miscibility gap,
surface tension, and deviations of the chemical potential
given by

Dc52
d

w
Dc522

d

w
ceq , ~92!

sc5
2

3

Kcceq
2

j
, ~93!

and

dm5
]m

]c
dc5wdc. ~94!

Thus the coefficientl is given as

l5GcKc~ddc!
Dc

sc
5Gc~ddc!

3

a
AKcb

2
. ~95!

B. Conserved dynamics

Now consider an almost planar interface separating
phases of different concentration with the same free ene
as occurs, for example, in spinodal decomposition. Si
concentration is a conserved field Eqs.~77!, ~81!, and ~83!
must be solved simultaneously. For simplicity, a two sid
model in which ]m/]c is the same on both sides of th
interface will be considered. This implies that the parame
do , b, andD are the same in both phases. It is straightf
ward to perform the calculations in the more general case
this does not introduce any new physics and is not v
illuminating. In the limit (]h/]x)2!1 it is convenient to
seek solutions of Eq.~81! of the form

dc~u,x!5dc~0!e( ikx2quuu1vt), ~96!

whereu'y2h(x,t). For this perturbation it is easy to sho
that the dimensionless quantitiesv̄[vdo

2/Dc , k̄

[kdo , q̄[qdo , and the dimensionless kinetic coefficie
b̄[bDc /do satisfy
02160
re
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e
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v̄5
22q̄3

122q̄~11ub̄u!
,

k̄25q̄22v̄. ~97!

In the long wavelength limit (k̄→0), k̄'q̄, and v̄'22k̄3,
as expected. It is also interesting to note that in the sh
wavelength limit (k̄→`), q̄→1/(212ub̄u), and v̄'2 k̄2.
The crossover from the diffusion limitedv;2k2 at short
wavelength to the asymptotic long wavelength behaviorv
;2k3 occurs at smaller values ofk as the kinetic coefficient
b becomes more negative. This behavior is sketched in
7.

This analysis shows that the term 11ub̄u in Eq. ~97! gives
rise to diffusive~i.e., v;2k2) behavior and is associate
with relaxation in the bulk and in the interface shape. F
example, if solutions of the formeikx2quuu are sought instead
of Eq. ~96! this term becomes simplyub̄u. Thus the ‘‘1’’
represents diffusive relaxation in the bulk and theub̄u repre-
sents relaxation of the interface shape.

A model commonly used to study spinodal decomposit
is known as the Cahn-Hilliard model or model B in the Ha
perin and Hohenberg classification scheme. The free en
for this model can be written:

F5E drWS 2
a

2
c21

b

4
c41

Kc

2
u¹W cu2D ~98!

and

]c

]t
5Gc¹

2
dF
dc

. ~99!

For this model a stationary planar interface is given by

FIG. 7. Dispersion relation for a planar interface separating t
conserved phases of equal free energy. The four lines plotted in

figure correspond from right to left2b̄50,10,100, and 1000.
4-13
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c0
in5ceq tanhS y

2j D , ~100!

wherej5AKc/2a andceq5Aa/b. The coefficients entering
the sharp-interface equations are then

do5 1
6 j, ~101!

b52
j

Dc
→b̄526, ~102!

and

Dc52Gca. ~103!

C. Nonconserved and conserved dynamics

Now consider the stability of a stable phase invading
supersaturated liquid phase at constant velocity. This is
cisely the situation considered by Langeret al. @2# in the
absence of kinetic undercooling and without relaxational
netics in the bulk phases. It is easy to show that the o
solution for a planar front moving at constant velocity whi
is consistent with the sharp-interface model@i.e., Eqs.~77!,
~81!, and~83!# is

dc0

Dc
5H exp~2vy8/Dc!212bv, y8.0

2bv, y8,0,
~104!

wherev is the velocity of the front andy85y2vt is a co-
ordinate in the comoving reference frame.

The stability of this moving front can be determined
studying perturbations about the planar front solution of E
~104!. We seek solutions of the form

dc

Dc
5

dc0

Dc
1H d l exp~ ikW•xW1vt2qy8!, y8.0

ds exp~ ikW•xW1vt1q8y8!, y8,0,
~105!

whereq,q8.0, and the position of the perturbed front is

y85h~xW ,t ![hk exp~ ikW•xW1vt !. ~106!

To linear order inhk andd l ,s , it is straightforward to show
that the dimensionlessv̄ and k̄ are determined by

q̄85q̄22/l̄ ,

v̄5
2~ q̄22/l̄ !@1/l̄ 2q̄~ q̄21/l̄ !#

122~ q̄21/l̄ !~12b̄ !
,

and

k̄25q̄~ q̄22/l̄ !2v̄, ~107!

where l̄ [2Dc /dov and b̄[bDc /do . The dispersion rela-
tion for v̄( k̄) is plotted in Fig. 8 for l̄ 5100 and severa
values of b̄. Note that, in contrast to model B where th
kinetic coefficient has a definite signb,0, in model C it can
02160
a
e-

-
ly

.

have either sign. Note also that, whenl̄ →`, Eq. ~107! re-
duces to the result of Eq.~97! for conserved model B dy-
namics, as it should.

A simplified version of the general system discussed
this paper has been extensively used to study single p
solidification phenomena@10#. The free energyF can be
written as

F5E drWS f ~c!1
bl

2
F21

W2

2
u¹W cu2D , ~108!

whereF[c1h(c) ~calledu in Ref. @10#! with

f ~c!52
c2

2
1

c4

4
,

~109!

h~c!5
15

16S c2
2

3
c31

1

5
c5D .

With this form of f (c) the interface width isW. The dynami-
cal evolution is governed by Langevin equations for the c
served fieldc and the nonconservedc which, in the noiseless
limit, are

]c

]t
52

1

t

dF
dc

,

~110!
]c

]t
5

Dc

bl
¹2

dF
dc

.

A stationary planar interface is given by

c0
in~u!5tanhS u

WA2
D ,

~111!
c0

in~u!52h~c0
in!.

FIG. 8. The linear dispersion relation for the Mullins–Seker

instability including the kinetic coefficientb̄, for l̄ 5100
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For an interface with curvaturek propagating with velocity
v, it is tedious but straightforward to use the Gibbs-Thoms
relation of Eq.~77! to find

F~0!52S W

l D S 5

4A2
D k2F S 5

4A2
D S t

Wl D2S 209A2

840 D
3S W

D D Gv. ~112!

The term inside the square brackets of Eq.~112! is propor-
tional to the kinetic coefficientb and contains the sum of th
positive model A contribution and the negative model B pa
In principle the kinetic coefficientb can be of either sign in
solidification processes while it must be negative for a
process described by model B, such as phase separati
binary alloys.

It is also trivial to show that

v52DcS ]c

]u U
1

2
]c

]uU
2
D ,

~113!
]c

]t
5Dc¹

2c.

These results are identical to those found numerically
others@10#.

VI. SUMMARY

The use of continuum phase-field models to describe p
nomena involving the motion of well-defined sharp inte
faces is discussed. The phase-field models involve interfa
which are diffuse on a length scale ofj. Considering a gen-
eral class of phase-field models, it is shown how equati
describing the sharp-interface limit are obtained whenjk
!1 andjv/D!1. It is also shown that the Allen-Cahn equ
tion is a special case of the Gibbs-Thomson relation.

In particular, it should be emphasized that these calc
tions are independent of the specific form of the free ene
functional, providedF describes well-defined phases. Fu
thermore, the calculations are universal: a large class of
energies give rise to sharp-interface equations which di
only in the values of parameters but are of the same fu
tional form. To realize this goal, it is essential that t
‘‘sharp-interface limit’’ involves an interface of finite width
j. Expansions involving a zero width interface require a de
cate and unphysical tuning of parameters in the free ene
for thermodynamic consistency. In this work, the small p
rameterskj andvj/D vanish when the curvaturek and the
inverse diffusion lengthv/D go to zero for a finite interface
thicknessj. Thus delicate tuning is not required for therm
dynamic consistency in our approach which is based on
fundamental principles of statistical mechanics.

This work opens the way to construct physically cons
tent sharp-interface descriptions of more complicated m
tiple phase systems such as a solid in contact with a fl
which can support flows. This will involve mode couplin
02160
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terms in the dynamical equations. Once such Langevin eq
tions are constructed, there should be no conceptual d
culty in deriving the corresponding interface equations.
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APPENDIX A: CURVILINEAR COORDINATES

The curvilinear coordinates (u,s) used in the text are re
lated to the Cartesian coordinates in the following manne

rW5RW ~s!1un̂~s!, ~A1!

whereRW is the position of the interface andn̂(s) is the nor-
mal vector@see Fig. 9#. The metric tensorgab of the trans-
formation from Cartesian to curvilinear coordinates is

g5S 1 0

0 ~11uk!2D ,

wherek5]u/]s is the curvature withu the angle between
the x axis and the tangent to the curve. The Laplacian
(u,s) is then obtained in the usual manner

¹25(
a,b

1

Augu

]

]xa
Augugab

]

]xb

5
]2

]u2
1

k

11uk

]

]u
1

1

~11uk!2

]2

]s2
2

uks

~11uk!3

]

]s
,

~A2!

FIG. 9. Curvilinear coordinates.
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wherex15u, x25s, andgab are the components of the in
verse of the matrixg andks[]k/]s.

In the inner region the fields vary much more rapidly
theu direction than thes direction. The coordinates (u,s) are
rescaled in dimensionless units as (ū,s̄)[(u/j,es/j). The
dimensionless curvaturek̄5jk/e andk̄ s̄5j2ks /e2. In terms
of these dimensionless variables, the Laplacian become

j2¹25
]2

]ū2
1

ek̄

11eūk̄

]

]ū
1

e2

~11eūk̄ !2

]2

] s̄2

2
e3ūk̄ s̄

~11eūk̄ !3

]

] s̄

5
]2

]ū2
1k̄S e (

n50
~2eūk̄ !nD ]

]ū
1 S e2(

n50
~n11!

3~2eūk̄ !nD ]2

] s̄2
2

ūk̄ s̄

2 S e3(
n50

~n11!~n12!

3~2eūk̄ !nD ]

] s̄

5L01eL11e2L21e3L31•••, ~A3!

where

L05]2/]ū2, ~A4!

L15k̄]/]ū, ~A5!

L25]2/] s̄22k̄2ū]/]ū, ~A6!

and

L3522ūk̄]2/] s̄21k̄3ū2]/]ū2ūk̄ s̄]/] s̄. ~A7!

APPENDIX B: GREEN’S FUNCTIONS

It will also be useful to develop an expansion for t
inverse of the Laplacian or Green’s function. The Gree
function of interest is defined by

¹ rW
2
G~rW,rW8!5d~rW2rW8!. ~B1!

An expansion of the Green’s function can be obtained i
straightforward manner. Let G(rW,rW8)5G0(ū,s̄;ū8,s̄8)
1eG1(ū,s̄;ū8,s̄8)1••• where

L0G050, ~B2!

L0G11L1G05d~ ū2ū8!d~ s̄2 s̄8!, ~B3!

L0G21L1G11L2G050, ~B4!

and so on. The solution forG0 is G050, so that the lowes
order solution forG is G1, which satisfies the equation
02160
s

a

]2

]ū2
G1~ ū,s̄;ū8,s̄8!5d~ ū2ū8!d~ s̄2 s̄8! ~B5!

which has the solution

G1
2~ ū,s̄;ū8,s̄8!5H 1ūd~ s̄2 s̄8!, 2z,ū8,ū,0

1ū8d~ s̄2 s̄8!, 2z,ū,ū8,0,

G1
1~ ū,s̄;ū8,s̄8!5H 2ū8d~ s̄2 s̄8!, 0,ū8,ū,1z

2ūd~ s̄2 s̄8!, 0,ū,ū8,1z.

The surface termsS 6 of Eq. ~40! can be expanded as

S 656E
0

6 z̄
dū

]c0
in

]ū
R

B
ds̄8Fdm~ ū8,s̄8!

]G6

]ū8

2G6
]dm~ ū8,s̄8!

]ū8
GU

B

56E
0

6 z̄
dū

]c0
in

]ū
R

B
ds̄8(

n51
(

m50
en1m21

3F dmn~ ū8,s̄8!
]Gm

6~ ū,s̄;ū8,s̄8!

]ū8

2Gm
6~ ū,s̄;ū8,s̄8!

]dmn~ ū8,s̄8!

]ū8
GU

B

5eS 1
61e2S 2

61•••, ~B6!

where

S 1
656E

0

6 z̄
dū

]c0
in

]ū
R

B
ds̄8S dm1

]G1
6

]ū8
2G1

6
]dm1

]ū8
DU

B

,

S 2
656E

0

6 z̄
dū

]c0
in

]ū
R

B
ds̄8F dm2

]G1
6

]ū8
1dm1

]G2
6

]ū8

2G2
6

]dm1

]ū8
2G1

6
]dm2

]ū8
GU

B

, ~B7!

where the subscriptB indicates that the integrands are eva
ated on the boundary atū8506 and atū856 z̄.

The O(e) surface contribution becomes

S15S 1
21S 1

1

5E
2 z̄

0

dū
]c0

in

]ū S dm1
in~0,s̄!1ū

]dm1
in~ ū8,s̄!

]ū8
U

2 z̄

D
1E

0

z̄
dū

]c0
in

]ū S ū
]dm1

in~ ū8,s̄!

]ū8
U

z̄

1dm1
in~0,s̄!D
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5dm1
in~0,s̄!1

]dm1
in

]ū8
U

2 z̄

E
2 z̄

0

dū@c0
in~2 z̄ !2c0

in~ ū!#

1
]dm1

in

]ū8
U

z̄

E
0

z̄
dū@c0

in~1 z̄ !2c0
in~ ū!#. ~B8!

To evaluate the bulk contributionB, Eq. ~39! is expanded
in powers ofe. Equation~39! reads

B 656
1

Gc
E

0

6z

du
]c0

in

]u E
V6

drW8G6~rW,rW8!
]cin~rW8,t !

]t
.

~B9!

We note that]cin(rW8,t)/]t[v]cin/]u85O(e) since the nor-
mal interface velocityv5ev11•••, cin5c0

in1edc1
in1•••,

andG65eG1
61•••. Naive power counting seems to imp

that B 65O(e2), but changing variablesrW8→ū8,s̄8 yields

B 656
j2

tGc
E

0

6 z̄
dūE

V6

dū8ds̄8

11ū8ek̄~ s̄8!
(
n51

(
m51

en1m21

3vnGm
6~ ū,s̄;ū8,s̄8!

]c0
in

]ū

]

]ū8
~c0

in1edc1
in1••• !

5eB 1
61e2B 2

61•••, ~B10!

where

B 1
656

j2

tGc
E

0

6 z̄
dūE

V6

dū8ds̄8v1G1
6

]c0
in

]ū

]c0
in

]ū8
,

B 2
656

j2

tGc
E

0

6 z̄
dūE

V6

dū8ds̄8F ~v2G1
61v1G2

6

2v1k̄ū8G1
6!

]c0
in

]ū

]c0
in

]ū8
1v1G1

6
]c0

in

]ū

]dc1
in

]ū8
G .

~B11!

For the Green’s function introduced above,B1 becomes

B15B 1
21B 1

152
j2v1~ s̄!

tGc
E

2 z̄

z̄
dū@c0

in~ ū!2c0
out~ ū!#2.

~B12!
.

02160
APPENDIX C: TWO-SIDED MOBILITY

In this Appendix the sharp-interface equations are o
lined for a mobility that takes on a constant value in ea
phase. There is the question of consistency of such a th
in the presence of stochastic noises in the underlying Lan
vin equations which we do not attempt to answer. We c
sider the system in the unphysical limit of zero noise. F
convenience, the mobility in the phase in the regionu
,0 (u.0) is denotedGc

2 (Gc
1).

When the mobilityGc is different in the two phases, th
equation of motion for the concentrationc becomes

]c

]t
5¹W S Gc•¹W

dF
dc D5¹W ~Gc•¹W dm!5Gc¹

2dm1~¹W Gc!•¹W dm.

~C1!

The procedure outlined in the main text gives

E
V6

drW8
G6~rW,rW8!

Gc8

]c8

]t
5dm2E

S6

dSW 8•~dm8¹W 8G6

2G6¹W 8dm8!

1E
V6

drW8G6~rW,rW8!¹W dm8•
¹W Gc8

Gc8
.

~C2!

The last term in Eq.~C2! is O(e3) and can be neglected. It i
straightforward to repeat the calculations of Sec. III A for t
velocity of the interface and for the chemical potential at t
interface. All results remain the same except the diffus
constantDc has an obvious dependence onGc

6 and

E 25DcE
0

` du

Gc
1

@c0
out~u!2c0

in~u!#1E
2`

0 du

Gc
2

@c0
in~u!

2c0
out~u!#21E

0

` du

Gc
1

@c0
in~u!2c0

out~u!#2, ~C3!

and the interface positionu50 is determined by the solv
ability condition

E
0

` du

Gc
1

@c0
out~u!2c0

in~u!#5E
2`

0 du

Gc
2

@c0
in~u!2c0

out~u!#.

~C4!
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